Surgical fracture treatment Fixation types

II. Intramedullary pinning indication and tips

Surgical fixation methods

Internal fixation:

- Cerclage wires
- Pin fixation
- Tension band wire
- Intramedullary pins
- Screws
- Plate osteosynthesis
- Locking plates...

External fixation:

External skeletal fixation (ESF)

• Indication:

- simple, stable, midshaft fractures

- humerus, femur, tibia, ulna, metatarsus, metacarpus

Intramedullary pin fixation

• Principles:

- placed in the medullary cavity
- the pin ends should be bent
- neutralise the bending and shear forces
- onot effective against axial forces and torsion

Route of pin insertion

Antegrade

Retrograde

INSERTION POINTS

INSERTION POINTS

Pin diameter

 Fill about 60-75 percent of medullary cavity at its narrowest point

Insuffitient stability

Insuffitient blood supply

Intramedullary pinning

Kuentscher-nail

Steinmann-pin

Stack pining

• Rush-pining

Stack-pining

2-5 Kirschner-wires

Good against bending and shear, moderate against rotational forces

Bending of protruding ends minimise tissue irritation and loosening

Can be combined with cerclage or ESF

Rush-pining

2 relat. thin Kirschner-wires

Epi- and metaphysis fractures

moderate stability against bending and rotational forces

Can be combined with cerclage or ESF

Rush-pining

Cadaver femur Rush-pining

Auxilliary fixations with pins

If i.m. pin does not provide adequate stability

Cerclage

Hemicerclage

ESF

Rush-pin & cerclage

Rush-pin & ESF

Intramedullary pinning Advantages

o simple technique

few special instruments

cheap implants

simlple implant removal Less soft tissue damage

Good callus building

Quick healing

Intramedullary pinning Disadvantages

Limited indications

 Lower stability against rotation and axial load

Oblique femur fracture

Oblique femur fracture

Intramedullary pinning complications:

Tissue irritation

Pin loosening and migration

Good indication

Fanny, cat 3 m. 9

Implant removal Why?

- Severe complications
 - implant failure
 - septic inflam.
- Healed bone: prevention of
 - stress protection
 - pin migration

Implant removal When?

Implant removal When?

 At comlete bone healing, confirmed by X-ray

Inmature animal

4-8 weeks

Adult animal

3-6 months

Implant removal When?

- Time of bone healing depends
 - age
 - fract. type
 - stability of fixation
 - location, breed etc.

Pactical Training

